
New developments in cryptology

Prof. Bart Preneel

COSIC

Bart.Preneel(at)esatDOTkuleuven.be

http://homes.esat.kuleuven.be/~preneel

© Bart Preneel. All rights reserved

Outline

• 1. Cryptology: protocols

– identification/entity authentication

– key establishment

• 2. Public Key Infrastructures

• 3. Secure Networking protocols

– Internet Security: email, web, IPSEC, SSL

• 4. Using cryptography well

• 5. New developments in cryptology

Outline

• Modes of operation

• The hash function disaster

• How to encrypt using RSA

• Algorithm: secure design and

implementation

• Obfuscation

• SPAM fighting

How to use cryptographic algorithms

• Modes of operation

• Padding and error messages

• Authenticated encryption

• How to encrypt with RSA

How NOT to use a block cipher:

ECB mode

block

cipher

P1

C1

block

cipher

P2

C2

block

cipher

P3

C3

An example plaintext

Encrypted with substitution and transposition cipher

Encrypted with AES in ECB and CBC mode

How to use a block cipher: CBC mode

AES

IV

P1

C1

AES AES

P2 P3

C2 C3

CBC mode decryption

AES-1

IV

P1

C1

P2 P3

C2 C3

AES-1 AES-1

What if IV is constant?

AES

IV

P1

C1

AES AES

P2‟ P3‟

C2‟ C3‟

Repetition in P results in repetition in C:

information leakage need random and secret IV

CBC with incomplete plaintext (1)

AES

IV

P1

C1

AES AES

P2 P3|| 0000..0

C2 C3

1 byte
Plaintext length

in bytes

CBC with incomplete plaintext (2)

AES-1

IV

P1

C1

P2 P3|| 1000..0

C2 C3

AES-1 AES-1

+ 1100110011||0000….000

+ 1100110011||0000….000

Plaintext length in

bytes

CBC with incomplete plaintext (3)

• If the first 10 bits of P3 are equal to 1100110011
then after the modification P3‟ will be equal to 0

• The decryption will then produce an error message
because the plaintext length field is incorrect

• Conclusion: information on 1 byte of P3 can be
obtained using on average 128 chosen ciphertexts

• Protection: random padding or authenticated
encryption

P1 P2 P3|| 1000..0

+ 1100110011||0000….000

Plaintext length in

bytes

Modes of Operation

• CTR mode allows for pipelining

– Better area/speed trade-off

• authentication: E-MAC

– CBC-MAC with extra encryption in last block

• authenticated encryption:

– most applications need this primitive (ssh, TLS,

IPsec, …)

– for security against chosen ciphertext this is

essential

Authenticated encryption

Inefficient solution: encrypt then MAC

We can do better

• IAPM

• XECB

• OCB

• CCM

• EAX

• CWC

• GCM

Issues:
• associated data

• parallelizable

• on-line

• patent-free

• provable security

Example: CCM: CTR + CBC-MAC

E

SN || 0 || Length

CBC IV

E E E E E

E

T
1

T
2

P
1

P
2

P
n

... ...

Cleartext data

covered by MAC
Plaintext

Truncate

C
1

Ciphertext

SN || 1

E

C
2

SN || 2

E

C
n

...

SN || n

E

C
n+1

SN || n+1

SN = packet sequence number (WEP "IV")

CBC-MAC

Counter

Mode

CBC-MAC

"result"

Hash functions

• collision resistance

• preimage resistance

• 2nd preimage

resistance

This is an input to a crypto-

graphic hash function. The input

is a very long string, that is

reduced by the hash function to a

string of fixed length. There are

additional security conditions: it

should be very hard to find an

input hashing to a given value (a

preimage) or to find two colliding

inputs (a collision).

1A3FD4128A198FB3CA345932

• MDC (manipulation detection

code)

• Protect short hash value rather

than long text

h

MDx-type hash function history

MD5

SHA

SHA-1

SHA-256

SHA-512

HAVAL

Ext. MD4

RIPEMD

RIPEMD-160

MD4 90

91

92

93

94

95

02

MD5

• Advice (RIPE since „92, RSA
since „96): stop using MD5

• Largely ignored by industry
(click on a cert...)

• Collisions for MD5 are within
range of a brute force attack
anyway (264)

• [Wang+‟04] collision in 15
minutes

• Today: collisions in seconds

SHA-1

• SHA designed by NIST (NSA) in „93

• redesign after 2 years (‟95) to SHA-1

• Collisions found for SHA-0 in 251 [Joux+‟04]

• Reduced to 239 [Wang+‟05]

• Collisions for SHA-1 in 263 [Wang+’05]

• Structured collisions for SHA-1 found for 64 out of
80 rounds [De Cannière-Rechberger’06]

• Prediction: collision for SHA-1 in 2007

From: “Cryptography Simplified in Microsoft .NET”

Paul D. Sheriff (PDSA.com) [Nov. 2003]

How to Choose an Algorithm

• For example, SHA1 uses a 160-bit encryption key, whereas
MD5 uses a 128-bit encryption key; thus, SHA1 is more secure
than MD5.

• Another point to consider about hashing algorithms is whether
or not there are practical or theoretical possibilities of
collisions. Collisions are bad since two different words could
produce the same hash. SHA1, for example, has no practical or
theoretical possibilities of collision. MD5 has the possibility of
theoretical collisions, but no practical possibilities.

In October 2006 this information is still available on MSDN

Impact of collisions (1)
• collisions for MD5, SHA-0, SHA-1

– two messages differ in a few bits in 1 to 3 512-bit input

blocks

– limited control over message bits in these blocks

– but arbitrary choice of bits before and after them

• what is achievable?
– 2 colliding executables

– 2 colliding postscript documents and gif files [Lucks,
Daum „05]

– 2 colliding RSA public keys – thus with colliding X.509
certificates [Lenstra, Wang, de Weger ‟04]

– 2 arbitrary colliding files (no constraints) for 100K$

Impact of collisions (2)

• digital signatures: only an issue if for
non-repudiation

• none for signatures computed before
attacks were public (1 August 2004)

• none for certificates if public keys are
generated at random in a controlled
environment

• substantial for signatures after 1 August
2005 (cf. traffic tickets in Australia)

Other properties?

• 2nd preimage attack close to feasible for

MD4; not a problem for MD5/SHA-1

• HMAC

– HMAC-MD4 is broken

– HMAC-MD5 is questionable

– HMAC-SHA1 seems ok

• Many other issues have been identified with

all our hash functions

The future
• RIPEMD-160 seems more secure than SHA-1

• use more recent standards (slower)

– SHA-256, SHA-512

– Whirlpool

• Upgrading MD5 and SHA-1 in Internet protocols:

– it doesn‟t work: algorithm flexibility is much harder than

expected

• NIST will probably run an open competition from

2007 to 2011

How to encrypt with RSA?

• Assume that the RSA problem is hard

• … so a fortiori we assume that factoring is hard

• How to encrypt with RSA?

– Hint: ensure that the plaintext is mapped to a

random element of [0,n-1] and then apply the RSA

Encryption Permutation (RSAEP)

How (not) to encrypt with RSA?

• Non-hybrid schemes

– RSA-PKCS-1v1_5 (RSA Laboratories, 1993)

– RSA-OAEP (Bellare-Rogaway, 1994)

– RSA-OAEP+ (Shoup, 2000)

– RSA-SAEP (Johnson et al., 2001)

– RSA-SAEP+ (Boneh, 2001)

• Hybrid schemes

– RSA-KEM (Zheng-Seberry, 1992)

• RSA-KEM-DEM (Shoup, 2001)

• RSA-REACT (Okamoto-Pointcheval, 2001)

– RSA-GEM (Coron et al., 2002)

RSA PKCS-1v1_5

• Introduced in 1993 in PKCS #1 v1.5

• De facto standard for RSA encryption and

key transport

– Appears in protocols such as TLS, S/MIME, ...

RSA-PKCS-1v1_5 Diagram

EM

message

padding

000200

Random

nonzero

bytes

RSAEP CPublic Key
Source:

RSA Labs

RSA-PKCS-1v1_5 Cryptanalysis

• Low-exponent RSA when very long messages are

encrypted [Coppersmith+ „96/Coron „00]

– large parts of a plaintext is known or similar

messages are encrypted with the same public

key

• Chosen ciphertext attack [Bleichenbacher ‟98]

– decryption oracle: ciphertext valid or not?

– 1024-bit modulus: 1 million decryption queries

• These attacks are precluded by fixes in TLS

Bleichenbacher‟s attack

• Goal: decrypt c

– choose random s, 0 < s < n

– computer c‟ = c se mod n

– ask for decryption of c‟: m‟

– compute m as m‟/s mod n

• but m‟ does not have the right format!

• idea: try many random choices for s:

– if no error message is received, we know that

2B < (m s mod n) < 3B

– with B = 28(k-2) (k length in bytes of the modulus)

RSA-OAEP

• designers: Bellare and Rogaway 1993

• enhancements by Johnson and Matyas in 1996
(“encoding parameters”)

• already widely adopted in standards

– IEEE P1363 draft

– ANSI X9.44 draft

– PKCS #1 v2.0 (PKCS #1 v2.1 draft)

– ISO 18033-2 working draft 2000

RSA-OAEP Diagram

MGF

MGF

seed

EM

message00 ... 01pHashDB =

00

RSAEP CPublic Key

RNG

Source:

RSA Labs

RSA OAEP - security

[BR’93] RSA-OAEP is IND-CCA2 secure under

RSA assumption in ROM

[FOPS 01] RSA-OAEP is IND-CCA2 secure under

partial domain one-wayness RSA assumption in ROM

for RSA: partial domain one-wayness one-wayness

Shoup ‘00: the proof is wrong

Reduction is very weak ROM assumption is questionable

RSA OAEP - security

• Improved chosen ciphertext attack [Manger, Crypto
„01]

• requires a few thousand queries (1.1 log2n)

• opponent needs oracle that tells whether there is an
error in the integer-to-byte conversion or in the
OAEP decoding

• overall conclusion: RSA Inc. is no longer
recommending the use of RSA-OAEP

if it’s provable secure, it probably isn’t

How to encrypt with RSA

• RSA-KEM

– encrypt 2 session keys with RSA

– encrypt and MAC data with these 2 keys

• Recommended in NESSIE report
(http://www.cryptonessie.org) and to be included in
ISO 18033

• Similar problems for signatures:
ISO 9796-1 broken, PKCS#1 v1.0 questionable

Attack on PKCS #1 v1.5 implementations (1)
[Bleichenbacher06]

00 01 ff … ff 00 HHashID Magic

• Consider RSA with public exponent 3

• For any hash value H, it is easy to compute a string
“Magic” such that the above string is a perfect cube
of 3072 bits

• Consequence:

– One can sign any message (H) without knowing
the private key

– This signature works for any public key that is
longer than 3072 bits

• Vulnerable: OpenSSL, Mozilla NSS, GnuTLS

Attack on PKCS #1 v1.5 implementations (2)
[Bleichenbacher06]

00 01 ff … ff 00 HHashID Magic

• Fix
– Write proper verification code (but the signer cannot

know which code the verifier will use)

– Use a public exponent that is at least 32 bits

– Upgrade – finally – to RSA-PSS

Cryptographic algorithm selection

• Standards?

• Public domain versus proprietary

• Upgrades

Cryptographic standards

• Algorithms historically sensitive (e.g., GSM)

• Choices with little technical motivation (e.g.,

RC2 and MD2)

• Little or no coordination effort (even within

IETF)

• Technically difficult

A.S. Tanenbaum: “The nice thing about

standards is there's so many to choose from”

Major Standardization Bodies in Cryptography

• International
– ISO and ISO/IEC International Organization for Standardization

– ITU: International Telecommunications Union

– IETF: Internet Engineering Task Force

– IEEE: Institute of Electrical and Electronic Engineers

• National
– ANSI: American National Standards Institute

– NIST: National Institute of Standards and Technology

• European
– CEN: Comité Européen de Normalisation

– ETSI: European Telecommunications Standards Institute

• Industry
– PKCS, SECG

– W3C, OASIS, Liberty Alliance, Wi-Fi Alliance, BioAPI, WS-Security,
TCG

– GP, PC/SC, Open Card Framework, Multos

Independent evaluation efforts

• NIST (US) (1997-2001): block cipher AES for
FIPS 197 (http://csrc.nist.gov/CryptoToolkit/aes/)

• CRYPTREC (Japan) (2000-2003): cryptographic
algorithms and protocols for government use in Japan
(http://www.ipa.go.jp/security)

• EU-funded IST-NESSIE Project (2000-2003): new
cryptographic primitives based on an open evaluation
procedure (http://www.cryptonessie.org)

• ECRYPT eSTREAM (2004-2007): stream cipher
competition

Proprietary/secret algorithms

• No “free” public

evaluations

• Risk of snake oil

• Cost of (re)-evaluation

very high

• No economy of scale in

implementations

• Reverse engineering

• Fewer problems with

rumors and “New York

Times” attacks

• Extra reaction time if

problems

• Fewer problems with

implementation attacks

• Can use crypto for IPR

and licensing

Many insecure algorithms in use

• Do it yourself (snake oil)

• Export controls

• Increased computational power for attacks (64-bit

keys are no longer adequate)

• Cryptanalysis progress - including errors in proofs

• Upgrading is often too hard by design

– cost issue

– backward compatibility

– version roll-back attacks

Upgrade problem

• GSM: A5/3 takes a

long time

• Bluetooth: E0

hardwired

• TCG: chip with fixed

algorithms

• MD5 and SHA-1

widely used

• Negotiable algorithms

in SSH, TLS, IPsec,…

• But even then these

protocols have

problems getting rid of

MD5/SHA-1

Make sure that you do not use the same key with a weak

and a strong variant (e.g. GSM A5/2 and A5/3)

And the good news

• Many secure and free solutions available

today: AES, RSA,…

• With some reasonable confidence in secure

• Cost of strong crypto decreasing except for

“niche applications” (ambient intelligence)

In spite of all the problems, cryptography is

certainly not the weakest link in our security chain

What to use (generic solutions)

• Authenticated encryption mode (OCB, CWC,

CCM, GCM) with 3-key 3-DES or AES

• Hash functions: SHA-512 or Whirlpool

• Public key encryption: RSA-KEM or ECIES

• Digital signatures: RSA-PSS or ECDSA

• Protocols: TLS, SSH, IKE(v2)

Secure implementations of

cryptography

• Error messages and APIs (cf. supra)

• Side channels

– Timing attacks

– Power attacks

– Acoustic attacks

– Electromagnetic attacks

• Fault attacks

Power analysis tools for smart cards

5V

Software: constant time is crucial

• PIN verification

• Square and multiply for RSA

• Variable rotations in RC5 and RC6

• Swaps in RC4

• Problems with cache misses in ciphers with

S-boxes such as DES and AES

PIN verification

input (PIN_U[0..k-1],PIN[0..k-1])

i=0;

while (i < k) do {

if (PIN_U[i] != PIN[i]) return (0);

i = i+1;

}

return(1);

Problem?

Timing attack on RSA
• “square and multiply” algorithm

• exponent bits scanned from MSB to LSB (left to right)

Let k = bitsize of d (say 1024)

Let s = m

For i = k-2 down to 0

 Let s = s*s mod n (SQUARE)

 If (bit i of d) is 1 then
 Let s = s*m mod n (MULTIPLY)
 End if

End for

Example : s = m9 = m1001b

init (MSB 1) s = m

round 2 (bit 0) s = m2

round 1 (bit 0) s = (m2)2 = m4

round 0 (bit 1) s = (m4)2 * m = m9

Cache attack on crypto algorithms with

S-boxes (DES, AES,…)

• Cache misses influence execution time

• Uses HyperThreading to monitor the encrypting
process in real time and observe its use of shared
resources.

• [Tsunoo-Saito-Suzaki-Shigeri-Miyauchi 03]
Cryptanalysis of DES implemented on computers
with cache, CHES 2003, LNCS 2779, 62-76, 2003

• [Osvik-Shamir-Tromer 05] Cache Attacks and
Countermeasures: the Case of AES, RSA CT 2006

• [Bernstein 05] Cache-timing attacks on AES

Some crypto libraries

• OpenSSL: http://www.openssl.org/

• Cryptlib:
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

• SSLeay: http://www2.psy.uq.edu.au/~ftp/Crypto/

• IAIK Java:
http://jce.iaik.tugraz.at/products/index.php

• COSIC crypto library (contact B. Preneel)

• See also
http://www.ssh.fi/support/cryptography/online_r
esources/practical.html

Novel applications of cryptography

• Whitebox crypto

• SPAM fighting

Protection of software against

whitebox attacks

• Software
• Confidential information

• Secret keys

• Proprietary code

• Software and content distribution

• White-box setting
• Complete accesss to implementation

• Decompilation, reverse engineering, …

Protection of software against

whitebox attacks

• “sandboxing”
protect host against malware

• malicious hosts
protect software against malicious

hosts

Techniques

• White-box cryptography
• Extra input and output coding of encryption

• Code obfuscation
• Obfuscate code and program flow

• Other techniques:
• Integrity checks + error detection

 Tamper resistant software (TRS)

• Code encryption + „on-the-fly‟ decryption

White Box Cryptography

• Mathematical technique to hide keys in code

• With:
• EK : encryption function, key K

• F : arbitrary input coding

• G : arbitrary output coding

Pro and Cons

• Unique object code

– Choose F and G

– Integrate key

• Protect key

– No function that

computes EK for an

arbitrary key K

• Flexible

• Fast updates

• Increased memory

– Tables for input and
output coding and for
function

• Increased execution
time

• Security: very strong
attack model

– Trade-off with
performance

• Fast key update open
problem

Example

• DES
– 16-round Feistel

– 8 S-boxes

– 56-bit key

• White-box DES
– General structure

– 12 “T-boxes”

– Key built in code

The SPAM problem: it is about

economics, stupid

• list of 107-108 “good” names

• cost per message: ~10-5 €; total cost 100-1000 €

• hit ratio: 10-6 to 10-4: 10-10000 responses

• Cost to society

• Ruining e-mail as communication tool

• Time and attention

• ISP fees

• Storage and bandwidth

"The right to be left alone - the most

comprehensive of rights, and the right

most valued by civilized men."

- Supreme Court Justice Louis Brandeis

AND…

Fighting SPAM

• Filtering

• Make sender pay

• Ephemeral email addresses

• Data/Sender Authentication

Fighting SPAM (2)

• Filtering

 Everyone: text-based

 Brightmail: decoys; rules updates

 Microsoft Research: (seeded) trainable filters

 SpamCloud: collaborative filtering

 SpamCop, Osirusoft, etc: IP addresses, proxies, …

• Make Sender Pay

 Computation (CPU and/or memory)

 Human attention

 Cash, bonds, stamps (PennyBlack)

Fighting SPAM (3)

• Ephemeral e-mail addresses

– E.g. SPA: Single Purpose Addresses

• Data/Sender authentication

 Sign all emails

 Sender Permitted From (SPF): whitelist mail senders

 Sign domain names (Yahoo‟s DomainKeys)

 Authenticated mail: AMTP (TLS)

Often bypass for friends on whitelist

Filtering: limitations

• Still high cost if too late in the chain

• Spammers generate more sophisticated

emails…

– "Daphnia blue-crested fish cattle, darkorange

fountain moss, beaverwood educating, eyeblinking

advancing, dulltuned amazons...."

– FWD: Many On Stocks. Vali/u/m + V1codin+ ;

V|@GRa + /Xanax/ ; Pnter.m.in ? Som|a| muKPs

Computational Approach

• If I don‟t know the sender:

– Prove sender spent 10 seconds CPU time,

– just for me, and just for this message

• Checking proof by receiver:

– automatically in the background

– very efficient

• All unsolicited mail treated equally

Point-to-Point Architecture

(Ideal Message Flow)

• Single-pass “send-and-forget”

• Can augment with helper to handle slow machines
• Can add post office / pricing authority to handle money

payments
• Time mostly used as nonce for avoiding replays (cache tags,

discard duplicates; time controls size of cache)

Sender client

S

Recipient client

R

m, f(S,R,t,nonce)

Economics

• 10 seconds CPU cost a few hundreds of a cent

• (80,000 s/day) / (10s/message) = 8,000 msgs/day

• Hotmail‟s billion daily spams:

– 125,000 CPUs

– Up front capital cost just for hardware: $150 million

• The spammers can’t afford it.

Cryptographic Puzzles

• Hard to compute; f(S,R,t,nonce) can‟t be amortized

• lots of work for the sender

• Easy to check “z = f(S,R,t,nonce)”

• little work for receiver

• Parameterized to scale with Moore's Law

• easy to exponentially increase computational cost, while
barely increasing checking cost

• Can be based on (carefully) weakened signature
schemes, hash collisions

• Can arrange a “shortcut” for post office

Idea: replace CPU by memory

• CPU speeds vary widely across machines, but memory
latencies vary much less (20-100 vs 2-6)
 33 MHz PDA vs. 3 GHz PC

• design a puzzle leading to a large number of cache
misses

• Concrete schemes: [ABMW02] and [DGN03]

Easy Functions

[ABMW02]

0 1 2 2
n
-1 X0

 Xk

Xk-1

• f: n bits to n bits, easy

• Given xk range(f(k)), find a
pre-image with certain
properties

• Hope: best solved by building
table for f-1 and working back
from xk

• Choose n=22 so f -1 fits in
small memory, but not in
cache

• Optimism: xk is root of tree of
expected size k2

Social Issues

• Who chooses f?

– One global f? Who sets the price?

– Autonomously chosen f‟s?

• How is f distributed (ultimately)?

– Global f built into all mail clients? (1-pass)

– Directory? Query-Response? (3-pass)

Technical Issues

• Distribution lists

• Awkward introductory period

– Old versions of mail programs; bounces

• Very slow/small-memory machines

– Can implement “post office” (CPU), but:

– Who gets to be the Post Office? Trust?

• Cache Thrashing (memory-bound)

• The Subverters or Zombies

Conclusions: cryptography

• Can only move and simplify your problems

• Solid results, but still relying on a large
number of unproven assumptions and beliefs

• Not the bottleneck or problem in most
security systems

• To paraphrase Laotse, you cannot create
trust with cryptography, no matter how much
cryptography you use -- Jon Callas.

Conclusions (2): cryptography

• Leave it to the experts

• Do not do this at home

• Make sure you can upgrade

• Implementing it correctly is hard

• Secure computation very challenging and
promising: reduce trust in individual building
blocks

SPAM

• L. F. Cranor, B.A. LaMacchia: Spam!; Communications of the ACM
1998, 21 (8), 74-83.

• C. Dwork, M. Naor: Pricing via Processing or Combatting Junk Mail;
Crypto '92, LNCS 740, Springer-Verlag, Berlin 1992, 139-147.

• E. Gabber, M. Jacobsson, Y. Matias, A. Mayer: Curbing Junk E-Mail via
Secure Classification; 2nd International Conference on Financial
Cryptography (FC '98), LNCS 1465, Springer-Verlag, Berlin 1998, 198-
213.

• A. Juels, J. Brainard: Client Puzzles: A Cryptographic Countermeasure
Against Connection Depletion Attacks; 6th ISOC Symposium on
Network and Distributed System Security (NDSS '99), IEEE Press, 1999,
151-165.

• M. Abadi, M. Burrows, M. Manasse, E. Wobber, Moderately hard,
memory-bound functions, Proceedings of the 10th Annual Network and
Distributed System Security Symposium (February 2003), 25-39.

• C. Dwork, A. Goldberg, M. Naor, On Memory-Bound Functions for
Fighting Spam, Crypto 2003, 426-444.

Some books on cryptology

B. Schneier, Applied Cryptography, Wiley, 1996.
Widely popular and very accessible – make sure you get

the errata.

D. Stinson, Cryptography: Theory and Practice,

CRC Press, 1995. Solid introduction, but only for the

mathematically inclined. New edition in 2002 (part 1 of 2).

A.J. Menezes, P.C. van Oorschot, S.A. Vanstone,

Handbook of Applied Cryptography, CRC Press,

1997. The bible of modern cryptography. Thorough and

complete reference work – not suited as a first text book.

All chapters can be downloaded for free at

http://www.cacr.math.uwaterloo.ca/hac

More books on Cryptology

• B. Schneier, N. Ferguson, Practical

Cryptography, Wiley, 2003. A good short

overview with strong focus on implementation aspects

• R. J. Anderson, Security engineering: a guide

to building dependable distributed systems,

Wiley, 2001. Very useful resource for engineering

aspects

